

COMPUTATIONAL ANALYSIS OF UNSTEADY FLOW OF BLOOD AND HEAT TRANSFER THROUGH A STENOSESD ARTERY IN A THIRD GRADE FLUID MODEL WITH SLIP CONDITIONS

Jimoh A^1 , Okedayo $G.T^2$ & Ikpakyegh $L.N^3$

¹Research Scholar, Department of Mathematical Sciences, Kogi State University, Anyigba, Nigeria ²Research Scholar, Department of Mathematical Sciences, Ondo State University of Science and Technology Okitipupa, Ondo State, Nigeria ³Research Scholar, Department of Mathematics/Statistics/Computer Sciences, Federal University of Agriculture, Makurdi,

Benue State, Nigeria

ABSTRACT

This paper investigates the computational analysis of unsteady flow of blood and heat transfer through a stenosed artery in a third grade fluid model with slip conditions. Incorporated into the model is an externally applied magnetic field. The solutions of the unsteady non-linear dimensionless momentum and energy equations are obtained using Galerkin's weighted residual and Fourth order Runge-Kutta methods. Effects of slip velocity, magnetic field, shear thinning, shear thickening and other parameters on the flow and heat transfer characteristics are presented graphically and discussed.

KEYWORDS: Unsteady Blood Flow, Unsteady Heat Transfer, Magnetic Field, Slip Conditions, Stenosed Artery, Shear Thinning, Shear Thickening Third Grade Fluid And Galerkin's Weighted Residual Methods

Article History

Received: 21 Aug 2019 | Revised: 05 Oct 2019 | Accepted: 30 Oct 2019